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Recently it has been shown that quan tum theory can be viewed as a classical 
probability theory by treating Hilbert space as a measure space (H, B(H)) of 
"events"  or "hidden states." Each density operator W = ~ =  1 w, IIe~ defines a 
set M~, of  probability measures such that Iz(En) = w, (all n). Coding elements 

~ / / b y  subspaces  E,  entails distortion. We show that the von N e u m a n n  entropy 
S(W)  = - t r  W In W equals the effective rate at which the Hilbert space produces 
information with zero expected distortion, and comment  on the meaning of  this. 

In several recent articles (Bach, 1980; Cyranski, 1982) formalisms have 
been developed for the treatment of quantum theory (QT) as an ordinary 
probability theory on the measure space (14, B(H)). Here H is a Hilbert 
space and B(H) is the Borel algebra of its subsets generated using the usual 
topology. Bach (1980) has'interpreted the elements of H as "hidden vari- 
ables" whereas we (Cyranski, 1982) consider H simply as the "event space" 
of probability theory (Papoulis, 1965). 

Since QT is usually expressed in terms of opelators on the Hilbert 
space--or  more generally, as a formalism based on a nonclassic "logic" s 
defined essentially as an algebra of closed subspaces of H - - i t  is of interest 
to compare the formalisms in as many ways as possible to increase our 
understanding of the significance of QT. In this note we consider the von 
Neumann entropy 

S(1~') = - T r  Vr if" (1) 

and provide a novel interpretation for this quantity. 
We begin by noting that if E ~ s (i.e., E is a closed subspace of  H)  then 

q ~ ( 6 ) ~  (--~)- . H-~[0,  1] (I~l~ = projector onto E)  (2) 
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generalizes the set characteristic function [Xa (0) = 1 if g, c A, =0 if ~ ~ A c] 
for the vector space H and that the QT probability for E c s is (Jauch, 
1968) the expectation of  (2): 

P QT(E)=Tr  l ~ = f  dtz(tp)qE(~b), Ecs  (3) 
d H 

where /x is a probability measure on B(H). Note that s  B(H). Each 
density operator 1~r defines a partition of s (set of mutually orthogonal 
subspaces Ei) and a sequence wi -> 0 such that ~ wi = 1 with 

= ~ WiTIEI (4) 

For a system characterized by IV, E~ are the subspaces containing the 
eigenvectors for the maximal set of commuting observables and w; are their 
probabilities. Thus, l~V implicitly contains the totality of observationally 
accessible information about the system (Messiah, 1968). 

Note from (3) that the relation between a probabili ty/x on B(H) and 
a density matrix W is many-to-one. In fact, to each 17r corresponds the set 

} 
Let us now imagine that the "hidden" variables of the system are 

"communicating with" the observer over a "communication channel." While 
this fiction is ultimately inessential, it suggests the use of the formalism of 
communication theory (Berger, 1971). The "source" terminus of the channel 
is modeled by the "alphabet"  H transmitted according to probability 
/x ~ J/~r The "receiver" terminus is described by the "alphabet"  Y the 
set of E~s defined by W. Messages from the tr algebra B( Y)--generated by 
the singletons {E~}--are received with probabili ty/3(Ei) = w~. The channel 
is itself modeled by a joint probability /2:B(H)xB(Y)~[O, 1] having 
marginals/3 (A) =/2 ( H  x A) and/x  (A) = fi (A X Y). The mutual information 
associated with this channel is just the "entropy" 

f d/2 (6) 1[/2,/~ x f l ] :  nxrd/2 In d (~  •  

The correspondence of  the "hidden variables" ~b e H with the discrete 
set of (observable) eigenspaces E~ c Y clearly cannot be l -  1, so we generally 
anticipate distortion. Indeed, the formalism we employ is an effective model 
for data compression (Berger, 1971). In communication theory, a distortion 
measure d:Hx  Y~[0 ,  oo] is introduced and one considers the minimal 
mutual information (6) needed to transmit messages with average distortion 
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no greater than D > O: 

R(D)=-inf{l(fi,~ x~)l f d12d <~D } (7) 

The function R(D) is called the rate-distortion function because it is the 
effective rate at which the source produces information subject to the fidelity 
criterion, ~ d/2 d ~< D. 

An obvious choice of distortion measux'e is 

d(qJ, E.) -= 1 - qE.(0) (8) 

which defines zero distortion if qJ E E. and maximal distortion (= 1) when 
0-1-E.. This generalizes the "probability of error" distortion measure (Berger, 
1971): If  qn(0) is replaced by XE(qJ) 

f d/z(0) d(q;, E) = 1 - / z ( E )  (9) 
H 

is the probability that E c is observed instead of E. The measure (8) also 
suggests a "pattern recognition" (or classification) "cost function": How 
do we assign the elements of H to the "categories" E. and what is the 
"cost" of "errors"? 

Now necessary and sufficient conditions for the achievement of R(D) 
by some /~ have been proved in a general context (Cyranski, 1981). For 
D > 0 ,  s*(D) and t~,fl must satisfy 

f f  e_S.d(qs, E ) d~, 
U ~m Wm e-S*d(q"Em) 1 rE. ~ Y (lOa) 

I dht Z w,,,f*(O, E~) d(~b, Era) = D (10b) 
H m 

e-S*d(O,  Em) 

f*($,E,,,)-~, wne_S.a(4, ,E)  a.e. [/z], VEto ~ Y (lOc) 

Let f ( O ) =  dlx/dizo and suppose s*>> 1. Then (lOa) becomes 

f d f(O) e--S*d(O'E") f dlzo f(O) 1 = tXo,~ -s*d(q,E )~- | (11) 
H ~ m Wm e " " d E  n W n 

since exp(-s*d(O, Ek)) ~ 0  unless d(O, Ek) =0  and thus Oc Ek from (8). 
Hence (11) and (5) tell us that tz c ~ a ,  when s*~' oo. From (10b) we learn 

D=~w. fndl,~of(O) d(O, En) e-S*d(~176 ) 

(~**~), ~ w. f dl~of(O ) d(tp, E.) 0 (12) 
E n Wn 
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so that s* 1' oo corresponds to the desired case (D  $ 0). Finally, it can be 
shown (Cyranski, 1981) that 

As s* 1' oo (and D ~ 0), this becomes 

R ( D )  ~ -Y~ ~ d t~o f (O) In  w, - o o .  O= - ~  wn In w, = - T r  IVln 
D~0 ~ JEn n 

(14) 

We have thus found that the von  Neumann entropy corresponds to 
the information rate needed to "code"  the hidden variables" ~0 c H into 
the ("observable")  E,s  with zero average distortion. In other words, S(I~')  
is the source ("Nature")  information rate needed to classify with perfect 
fidelity the "hidden variables" among the observably dist inguishable 
mutually orthogonal subspaces defined by the QT "state" W. We hope that 
this alternative interpretation of quantum "ent ropy"  may prove useful in 
the deeper understanding of the significance of QT. 
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